3,502 research outputs found

    Social Attention: Modeling Attention in Human Crowds

    Full text link
    Robots that navigate through human crowds need to be able to plan safe, efficient, and human predictable trajectories. This is a particularly challenging problem as it requires the robot to predict future human trajectories within a crowd where everyone implicitly cooperates with each other to avoid collisions. Previous approaches to human trajectory prediction have modeled the interactions between humans as a function of proximity. However, that is not necessarily true as some people in our immediate vicinity moving in the same direction might not be as important as other people that are further away, but that might collide with us in the future. In this work, we propose Social Attention, a novel trajectory prediction model that captures the relative importance of each person when navigating in the crowd, irrespective of their proximity. We demonstrate the performance of our method against a state-of-the-art approach on two publicly available crowd datasets and analyze the trained attention model to gain a better understanding of which surrounding agents humans attend to, when navigating in a crowd

    Modeling Cooperative Navigation in Dense Human Crowds

    Full text link
    For robots to be a part of our daily life, they need to be able to navigate among crowds not only safely but also in a socially compliant fashion. This is a challenging problem because humans tend to navigate by implicitly cooperating with one another to avoid collisions, while heading toward their respective destinations. Previous approaches have used hand-crafted functions based on proximity to model human-human and human-robot interactions. However, these approaches can only model simple interactions and fail to generalize for complex crowded settings. In this paper, we develop an approach that models the joint distribution over future trajectories of all interacting agents in the crowd, through a local interaction model that we train using real human trajectory data. The interaction model infers the velocity of each agent based on the spatial orientation of other agents in his vicinity. During prediction, our approach infers the goal of the agent from its past trajectory and uses the learned model to predict its future trajectory. We demonstrate the performance of our method against a state-of-the-art approach on a public dataset and show that our model outperforms when predicting future trajectories for longer horizons.Comment: Accepted at ICRA 201

    Anytime Cognition: An information agent for emergency response

    Get PDF
    Planning under pressure in time-constrained environments while relying on uncertain information is a challenging task. This is particularly true for planning the response during an ongoing disaster in a urban area, be that a natural one, or a deliberate attack on the civilian population. As the various activities pertaining to the emergency response need to be coordinated in response to multiple reports from the disaster site, a user finds itself cognitively overloaded. To address this issue, we designed the Anytime Cognition (ANTICO) concept to assist human users working in time-constrained environments by maintaining a manageable level of cognitive workload over time. Based on the ANTICO concept, we develop an agent framework for proactively managing a user’s changing information requirements by integrating information management techniques with probabilistic plan recognition. In this paper, we describe a prototype emergency response application in the context of a subset of the attacks devised by the American Department of Homeland Security

    Content Masked Loss: Human-Like Brush Stroke Planning in a Reinforcement Learning Painting Agent

    Full text link
    The objective of most Reinforcement Learning painting agents is to minimize the loss between a target image and the paint canvas. Human painter artistry emphasizes important features of the target image rather than simply reproducing it (DiPaola 2007). Using adversarial or L2 losses in the RL painting models, although its final output is generally a work of finesse, produces a stroke sequence that is vastly different from that which a human would produce since the model does not have knowledge about the abstract features in the target image. In order to increase the human-like planning of the model without the use of expensive human data, we introduce a new loss function for use with the model's reward function: Content Masked Loss. In the context of robot painting, Content Masked Loss employs an object detection model to extract features which are used to assign higher weight to regions of the canvas that a human would find important for recognizing content. The results, based on 332 human evaluators, show that the digital paintings produced by our Content Masked model show detectable subject matter earlier in the stroke sequence than existing methods without compromising on the quality of the final painting. Our code is available at https://github.com/pschaldenbrand/ContentMaskedLoss

    A cognitive architecture for emergency response

    Get PDF
    Plan recognition, cognitive workload estimation and human assistance have been extensively studied in the AI and human factors communities, resulting in many techniques being applied to domains of various levels of realism. These techniques have seldom been integrated and evaluated as complete systems. In this paper, we report on the development of an assistant agent architecture that integrates plan recognition, current and future user information needs, workload estimation and adaptive information presentation to aid an emergency response manager in making high quality decisions under time stress, while avoiding cognitive overload. We describe the main components of a full implementation of this architecture as well as a simulation developed to evaluate the system. Our evaluation consists of simulating various possible executions of the emergency response plans used in the real world and measuring the expected time taken by an unaided human user, as well as one that receives information assistance from our system. In the experimental condition of agent assistance, we also examine the effects of different error rates in the agent's estimation of user's stat or information needs

    Partial Sum Minimization of Singular Values in Robust PCA: Algorithm and Applications

    Full text link
    Robust Principal Component Analysis (RPCA) via rank minimization is a powerful tool for recovering underlying low-rank structure of clean data corrupted with sparse noise/outliers. In many low-level vision problems, not only it is known that the underlying structure of clean data is low-rank, but the exact rank of clean data is also known. Yet, when applying conventional rank minimization for those problems, the objective function is formulated in a way that does not fully utilize a priori target rank information about the problems. This observation motivates us to investigate whether there is a better alternative solution when using rank minimization. In this paper, instead of minimizing the nuclear norm, we propose to minimize the partial sum of singular values, which implicitly encourages the target rank constraint. Our experimental analyses show that, when the number of samples is deficient, our approach leads to a higher success rate than conventional rank minimization, while the solutions obtained by the two approaches are almost identical when the number of samples is more than sufficient. We apply our approach to various low-level vision problems, e.g. high dynamic range imaging, motion edge detection, photometric stereo, image alignment and recovery, and show that our results outperform those obtained by the conventional nuclear norm rank minimization method.Comment: Accepted in Transactions on Pattern Analysis and Machine Intelligence (TPAMI). To appea

    HCNAF: Hyper-Conditioned Neural Autoregressive Flow and its Application for Probabilistic Occupancy Map Forecasting

    Full text link
    We introduce Hyper-Conditioned Neural Autoregressive Flow (HCNAF); a powerful universal distribution approximator designed to model arbitrarily complex conditional probability density functions. HCNAF consists of a neural-net based conditional autoregressive flow (AF) and a hyper-network that can take large conditions in non-autoregressive fashion and outputs the network parameters of the AF. Like other flow models, HCNAF performs exact likelihood inference. We conduct a number of density estimation tasks on toy experiments and MNIST to demonstrate the effectiveness and attributes of HCNAF, including its generalization capability over unseen conditions and expressivity. Finally, we show that HCNAF scales up to complex high-dimensional prediction problems of the magnitude of self-driving and that HCNAF yields a state-of-the-art performance in a public self-driving dataset.Comment: CVPR 202
    corecore